Refine Your Search

Topic

Search Results

Technical Paper

Research into Autoignition Characteristics of Diesel Fuel in a Controllable Active Thermo-Atmosphere

2006-04-03
2006-01-0073
A novel method is applied to analysis the autoignition phenomenon. Experiments on the study of autoignition characteristics of diesel fuel were carried out with a Controllable Active Thermo-Atmosphere Combustor. The results show that the method for autoignition studying of liquid fuel is of feasibility. Autoignition delay time and autoignition height from the nozzle increase with the coflow temperature decreasing and autoignition delay time changes sensitively under lower coflow temperature. Liftoff height of diesel spray flame decreases with the increasing of coflow temperature. Lower temperature causes higher variance of liftoff height. It might be speculated that there are two different mechanisms of flame stabilization that the lower lift-off heights flames are related to a balance between the flow velocity and flame speed while the higher lift-off heights flames are stabilized by the mixture autoignition.
Technical Paper

Self-Tuning PID Design for Slip Control of Wedge Clutches

2017-03-28
2017-01-1112
The wedge clutch takes advantages of small actuation force/torque, space-saving and energy-saving. However, big challenge arises from the varying self-reinforced ratio due to the varying friction coefficient inevitably affected by temperature and wear. In order to improve the smoothness and synchronization time of the slipping process of the wedge clutch, this paper proposes a self-tuning PID controller based on Lyapunov principle. A new Lyapunov function is developed for the wedge clutch system. Simulation results show that the self-tuning PID obtains much less error than the conventional PID with fixed gains. Moreover, the self-tuning PID is more adaptable to the variation of the friction coefficient for the error is about 1/5 of the conventional PID.
Technical Paper

Study of Load Distribution for a Semi - Tracked Air - Cushion Vehicle

1999-09-14
1999-01-2788
A new design method is proposed for a semi-tracked air-cushion vehicle for soft terrain by using a flexible bind, which offers more flexibility in designing. This paper describes the design principle focusing on optimizing the total power consumption of the vehicle. The relationships of load distribution and power consumption are analyzed. The prototype experiments showed that the proposed design can meet the demand of tractive and transport efficiency with its optimal state of using minimum total power consumption and meanwhile maintaining ride comfort.
Technical Paper

Study on the Optimal Control Strategy of Transient Process for Diesel Engine with Sequential Turbocharging System

2016-10-17
2016-01-2157
Three-phase sequential turbocharging system with two unequal-size turbochargers is developed to improve fuel economy performance and reduce emission of the automotive diesel engine, which satisfies wide range of intake flow demand. However, it results in complicated transient control strategies under frequently changing operating conditions. The present work aims to optimize the control scheme of boost system and fuel injection and evaluate their contributions to the improvement of transient performance. A mean value model for diesel engine was built up in SIMULINK environment and verified by experiment for transient study. Then a mathematical model of optimization issue was established. Strategies of control valves and fuel injection for typical acceleration and loading processes are obtained by coupled calculating of the simulation model and optimization algorithm.
Technical Paper

System Characteristics of Direct and Secondary Loop Heat Pump for Electrical Vehicles

2018-04-03
2018-01-0063
The electricity energy consumption for passenger cabin heating can drastically shorten the driving range for electric vehicles in cold climates. Mobile heat pump system is considered as an effective method to improve heating efficiency. This study investigates the system characteristics of mobile heat pump systems for electrical vehicle application. Based on KULI thermal management software, simulation models including HFC-R134a direct heat pump (DHP) and secondary loop heat pump (SLHP) were developed. The secondary loop employed in the SLHP includes a coolant pump, an indoor heater core and a plate heat exchanger, instead of an indoor condenser in the DHP. The use of a secondary loop has advantages to improve air outlet temperature uniformity. The simulation models were verified by measured data obtained from calorimeter experiments. By adopting simulation models, the effects of indoor and outdoor temperatures on system performance and cycle characteristics were discussed.
Technical Paper

The Effects of Injection Strategies on Particulate Emissions from a Dual-Injection Gasoline Engine

2019-01-15
2019-01-0055
European standards have set stringent PN (particle number) regulation (6×1011 #/km) for gasoline direct injection (GDI) engine, posing a great challenge for the particulate emission control of GDI engines. Dual-injection, which combines direct-injection (DI) with port-fuel-injection (PFI), is an effective approach to reduce particle emissions of GDI engine while maintaining good efficiency and power output. In order to investigate the PN emission characteristics under different dual-injection strategies, a DMS500 fast particle spectrometer was employed to characterize the effects of injection strategies on particulates emissions from a dual-injection gasoline engine. In this study, the injection strategies include injection timing, injection ratio and injection pressure of direct-injection.
Technical Paper

The Nozzle Flows and Atomization Characteristics of the Two-Component Surrogate Fuel of Diesel from Indirect Coal Liquefaction at Engine Conditions

2018-09-10
2018-01-1691
Recently, all world countries facing the stringent emission regulations have been encouraged to explore the clean fuel. The diesel from indirect coal liquefaction (DICL) has been verified that can reduce the soot and NOx emissions of compression-ignition engine. However, the atomization characteristics of DICL are rarely studied. The aim of this work is to numerically analyze the inner nozzle flow and the atomization characteristics of the DICL and compare the global and local flow characteristics of the DICL with the NO.2 diesel (D2) at engine conditions. A surrogate fuel of the DICL (a mixture of 72.4% n-dodecane and 27.6% methylcyclohexane by mass) was built according to its components to simulate the atomization characteristics of the DICL under the high-temperature and high-pressure environment (non-reacting) by the Large Eddy Simulation (LES).
X